Electron Spin Resonance of $Tris(2.2'-biovridvl)$ vanadium(0)

Anne L. Rieger, Jeanette L. Scott, and Philip H. Rieger'

Department of Chemistry, Brown University Providence, Rhode Island 029 12

Received *July 13,* 1993

Introduction

The isotropic electron spin resonance (ESR) spectrum of tris- (2,2'-bipyridyl)vanadium(0), V(bpy)₃, was first reported more than 30 years ago by Elschner and Herzog.¹ Although this spectrum was repeated by König,² and by Davison et al.,³ and isotropic spectra have been reported for the Ti(-I),² Nb(O),⁴ $Cr(I)$,^{1,2} and $Mo(I)^5$ analogs, in no case has a powder, frozen solution, or dilute single-crystal spectrum been obtained. Davison et al.³ suggested that the odd electron in $V(bpy)_3$ is extensively delocalized into the π^* orbitals of the bipyridyl ligands, but in the absence of a solid-state ESR spectrum, this hypothesis has remained speculative. We report here ESR spectra of $V(bpy)_3$ in fluid and frozen tetrahydrofuran solutions which confirm the delocalization hypothesis.

Experimental Section

V(bpy)₃ was prepared by the method of Quirk and Wilkinson⁶ by adding $2.2'$ -bipyridyl to a suspension of sodium amalgam and $VCl₃$ in THF. The method reported by Herzog' failed in our hands; although good yields of $[V(bpy)_3]I_2$ were obtained, we were unable to reduce this compound in aqueous alcohol using either magnesium powder or zinc amalgam. As reported, $V(bpy)_3$ is extremely air-sensitive, although the compound is stable indefinitely in solution in the absence of air.

ESR spectra were obtained using a Bruker ER 220D ESR spectrometer, equipped with a liquid-nitrogen Dewar insert, a Systron-Donner microwave frequency counter, and a Bruker NMR gaussmeter.

Results and Discussion

As reported earlier,¹⁻³ the isotropic ESR spectrum of $V(bpy)$ ₃ consists of eight lines, the widths of which exhibit relatively little dependence on m_l . This observation suggests that the g and ⁵¹V nuclear hyperfine matrices are rather less anisotropic than is usually found for transition metal complexes. The spectrum is easily analyzed (to third order in perturbation theory) to give $\langle g \rangle$ $= 1.9816 \pm 0.0001$ and $\langle A^v \rangle = (77.5 \pm 0.1) \times 10^{-4}$ cm⁻¹ (83.8) G). König² observed vestiges of ¹⁴N hyperfine structure (the sharpest ⁵¹V hyperfine line was somewhat lumpy) with $a^N \approx 2.3$ G; althoughh there was **no** trace of resolution in our spectra, the lines are non-Lorentzian and the shape is undoubtedly due to unresolved hyperfine structure. Assuming six equivalent **14N** nuclei $(I = 1)$, our observed line shape is best fit with $a^N \approx 2.8$ G, in satisfactory agreement with K6nig's more direct observation.

The frozen-solution spectrum, shown in Figure la, is at first glance very much like an isotropic spectrum with a large $m²$ line width dependence. However, two small features **on** either side of thesharpest line providethe key to interpretation. Thespectrum is strictly axial with $g_{\perp} \approx g_{\parallel}$ and $A_{\perp} > A_{\parallel}$, so that the perpendicular features are prominent with all but two of the parallel features superimposed **on** or obscured by perpendicular features. **"Stick** spectra" for the parallel and perpendicular orientations are shown

Figure 1. X-band ESR spectrum of V(bpy)₃ in THF solution: (a) experimental spectrum at **77** K; (b) stick spectrum showing location of parallel and perpendicular features; (c) computer simulation for g_{\parallel} = 1.988, $g_{\perp} = 1.9805$, $A_{\parallel} = 48 \times 10^{-4}$ cm⁻¹, and $A_{\perp} = 86 \times 10^{-4}$ cm⁻¹ with 5-G line widths and Gaussian shapes.

in Figure lb. Analysis of the spectrum is straightforward, and least-squares fitting of the observed features gives $g_1 = 1.988 \pm 1.988$ 0.002, g_{\perp} = 1.9805 ± 0.0005, A_{\parallel} = (42 ± 1) × 10⁻⁴ cm⁻¹, and A_{\perp} = (86.0 \pm 0.1) \times 10⁻⁴ cm⁻¹. A computer simulation based **on** these parameters is shown in Figure **IC.**

In D_3 symmetry, the metal d-orbitals belong to the a_1 and e representations, with the a_1 orbital identified as d_{z^2} (z along the C_3 axis). Since the spectrum is easily observed at room temperature, V(bpy)3 clearly does not have a degenerate ground state, and since the symmetry is D_3 ,⁸ we conclude that the metal contribution to the singly-occupied molecular orbital (SOMO) must be d_{z^2} . If spin-orbit coupling contributions are ignored (since the g-matrix is so nearly isotropic, spin-orbit coupling contributions are probably quite small), the hyperfine matrix components are given by

$$
A_{\parallel} = \langle A \rangle + \frac{4}{7} P \rho^{\rm d} \tag{1a}
$$

$$
A_{\perp} = \langle A \rangle - \frac{2}{7} P \rho^d
$$
 (1b)

where $P = 146.0 \times 10^{-4}$ cm⁻¹ is the dipolar coupling parameter⁹ for ⁵¹V and ρ^d is the 3d spin density. Subtracting these equations, we obtain

$$
\rho^d = \frac{7}{6P}(A_{\|} - A_{\perp})
$$
 (2)

Substituting the experimental values of A_{\parallel} and A_{\perp} (assuming both are negative), we obtain $\rho^d = 0.30$.

Vanadium 4s character is symmetry-allowed if the SOMO is a_1 . If all the spin density were in 4s, the expected coupling would be 1389 \times 10⁻⁴ cm⁻¹,⁹ so that at least 5.6% 4s character would be required to account for the observed coupling. This is not impossible for vanadium(0), but it would imply that $\langle A^V \rangle > 0$ and that $A_{\parallel} > A_{\perp}$, inconsistent with the assumption that the 3d contribution is d_{z^2} . Accordingly, we conclude that the coupling is negative and arises through spin polarization of inner-shell vanadium s-orbitals by the 3d spin and by the spin density **on** the adjacent nitrogen atoms. Although 84 G seems a large coupling through this route, we must recall that for $[VO(H₂O)₅]^{2+}$, with

⁽¹⁾ Elschner, B.; Herzog, **S.** *Arch Sci. (Geneuu)* **1958,** *12,* **160-164. (2)** Kbnig, E. *2. Nururforsch.* **1964,** *19u,* **1139-1147.**

⁽³⁾ Davison, A.; Edclstein, N.; Holm, R. H.; Maki, A. H. *Inorg. Chem.* **1965,4, 55-59.**

⁽⁴⁾ Wulf, E.; Herzog, S. *Z. Anorg. Allgem. Chem.* **1972,** *387,* **81-90**

⁽⁵⁾ DuBois, D. W.; Iwamoto, **R.** T.; Kleinberg, J. *Inorg. Nucl. Chem. Lett.* **1970,6, 53-57.**

⁽⁶⁾ Quirk, J.; Wilkinson, G. Polyhedron **1982,** *1,* **209-211.**

⁽⁷⁾ Herzog. **S.** *2. Anorg. Allgem. Chem.* **1958,** *294,* **155-179.**

⁽⁸⁾ Albrecht, **G** *2. Chem.* **1963.3, 182-187. (9)** Morton, J. R.; Preston, K. F. *J. Mugn. Reson.* **1977, 30, 577-582.**

the odd electron in d_{xy} so that 4s character is symmetry-forbidden, the isotropic coupling, ca. 116 G,¹⁰ must arise entirely from spin polarization.

If the SOMO were a_1 and purely d_{z^2} with filled orbitals of e symmetry somewhat lower in energy and empty e orbitals at much higher energy (the simple ligand-field model), we would expect $g_{\parallel} = g_e$, $g_{\perp} > g_e$. Since the SOMO apparently is a_1 , but largely ligand-based, g_{\parallel} , $g_{\perp} < g_{e}$ implies that there are empty orbitals of a2 and e symmetry with which the **SOMO** is coupled by L_z and L_x , L_y , respectively. The a_2 orbital must be rather low-lying since the departure of g_{\parallel} from g_{e} must be proportional to the relatively small nitrogen or carbon spin-orbit coupling constants, metal d-character being symmetry-forbidden. Since several orbitals of e symmetry are expected, some filled and some empty and most with some metal 3d character, the balance of couplings which results in $g_{\perp} < g_e$ is clearly more complex. Given our understanding of the g-matrix components, we should not be surprised that **(g)** varies somewhat over the series of isoelectronic

tris(bipyridyl) complexes: $Ti(-I)$, 2.007;² Nb(0), 1.974;⁴ Cr(I), $1.997;^{2}$ Mo(I), 2.037.⁵ These variations most likely reflect changes in g_{\perp} as the balance shifts between coupling to filled and empty e orbitals.

Davison et al.³ suggested low metal 3d participation in the SOMO of $V(bpy)$ ₃ by analogy with the formal vanadium(IV) thietene complex $[V(S_2C_2(CN)_2]_3]^2$, which has qualitatively similar isotropic m_r -dependent line widths and parameters, $\langle g \rangle$ $= 1.980 \pm 0.001$ and $\langle A^V \rangle = (58.5 \pm 0.5) \times 10^{-4}$ cm⁻¹. Earlier work by the same authors¹¹ had shown that this complex has a nearly isotropic g-matrix, with $A_{\parallel} = 92 \times 10^{-4}$ cm⁻¹ and $A_{\perp} =$ 41×10^{-4} cm⁻¹. Since $|A_{\parallel}| > |A_{\perp}|$, and for several other reasons discussed by Davison et al.,¹¹ it is unlikely that the metal contribution to the SOMO is d_{z^2} . There was speculation that the SOMO is a ligand-based orbital of a_2 symmetry, which in D_3 could only have $4p_z$ metal character, but this is inconsistent with the anisotropic ⁵¹V coupling. This issue apparently has not been resolved.

The results $V(bpv)$ do not share these difficulties, and the SOMO can be understood quite simply as an extensively delocalized orbital of a_1 symmetry with about 30% metal 3d character.

⁽¹⁰⁾ Iannuzzi, M. M.; Kubiak, C. P.; Rieger, P. H. *J. Phys. Chem.* **1976,80, 541-545.**

^(1 1) Davison, A.; Edelstein, N.; Holm, R. H.; Maki, A. H. *J. Am. Chem. SOC.* 1964, 86, 2799-2805.